

'NEU.rind'— A User-Friendly Digital Tool **Applied for Sustainability Assessments of Austrian Dairy Farms**

S. Hörtenhuber^{1*}, F. Steininger², M. Herndl³, K. Linke²,

C. Matzhold², S. Wieser⁴, C. Egger-Danner²

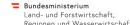
1 BOKU University Vienna, 2 ZuchtData, 3 AREC Raumberg-Gumpenstein

EAAP Conference 2025, Session 28, 26.8.2025, Innsbruck, Austria

Mit Unterstützung von Bund und Europäischer Union

Bundesministerium Land- und Forstwirtschaft. Regionen und Wasserwirtschaft

Wissenschaftspartner



Kooperationspartner

How it began...

- Cattle are nowadays in the focus of many discussions on climate and sustainability
- Sustainability
- Efficiency
- Environmental Impacts

→ Topics of the future

- Consumers expect transparency and high standards in production
- Central Cattle Database (RDV)
 - → Lots of relevant data related to sustainability!

Photo: AREC Raumberg-Gumpenstein

Provide assistance & benefits for farms and the industry!

Characteristics of the NEU.rind-tool

- User-friendly web application developed
- For farmers and the dairy industry -> benchmarking & tailored recommendations for farmers
- Using a comprehensive set of indicators
- Based on national and international standards (IDF 2022, ISO 14040,...)
- Combining easy use with analytical depth → using already existing data
 - → Integrated into Austrian Central Cattle Database to reduce data entry effort
- Successfully tested on 200 pilot farms
- Currently being implemented by Austrian dairies

Data

Central Cattle
Database
(RDV)

Husbandry/ buildings

- House and manure management
- Slurry/farmyard stores
- Spreading
- Mitigation of emissions

Feeding

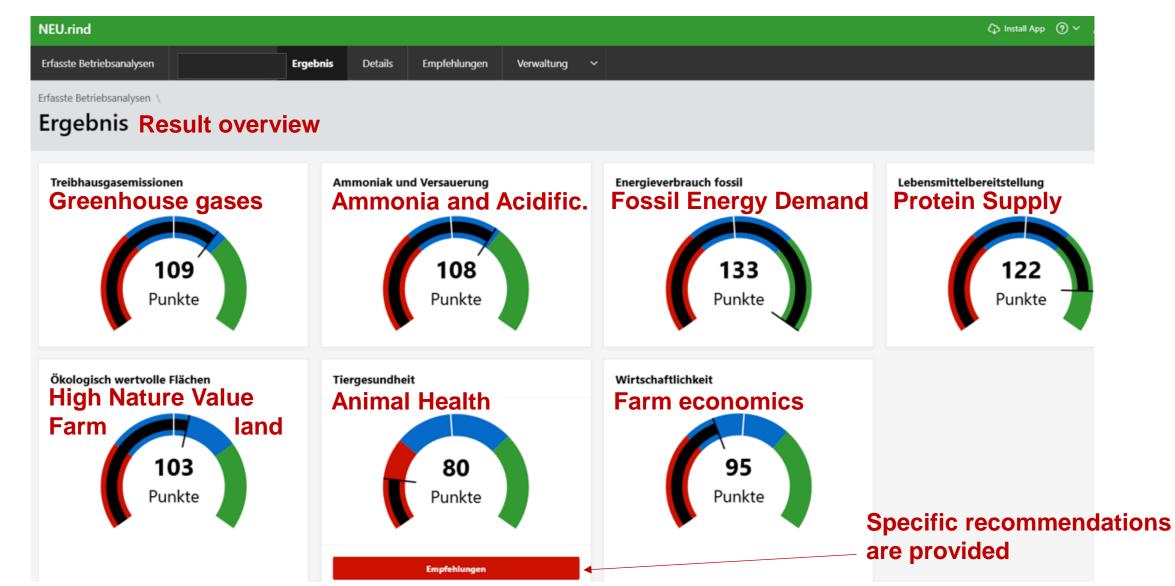
- Diets
- Roughages
- Concentrates
- Feeding systems

Land Management

- Farm area related to dairy production
- Crops
- Intensity

Animal data

- Bought/sold
- Reproduction
- Performances
- Health & Welfare (Q-Check)



Economics

- · Revenues (Milk, slaughtered animals, sold animals for breeding,...)
- Costs (feed, replacement cows, energy,...)

Results in the NEU.rind tool

LCA and sustainability indicators

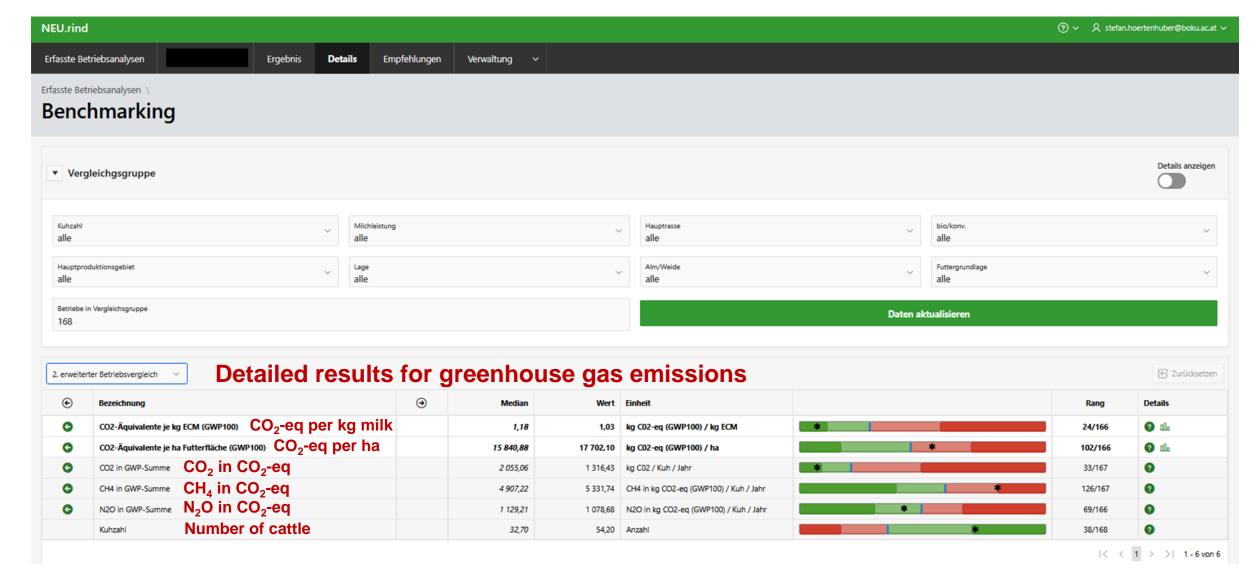
 Supplementing key performance indicators in addition to classical LCA impact categories

Human edible feed conversion efficiency (heFCEprotein), protein production per

hectare

Biodiversity

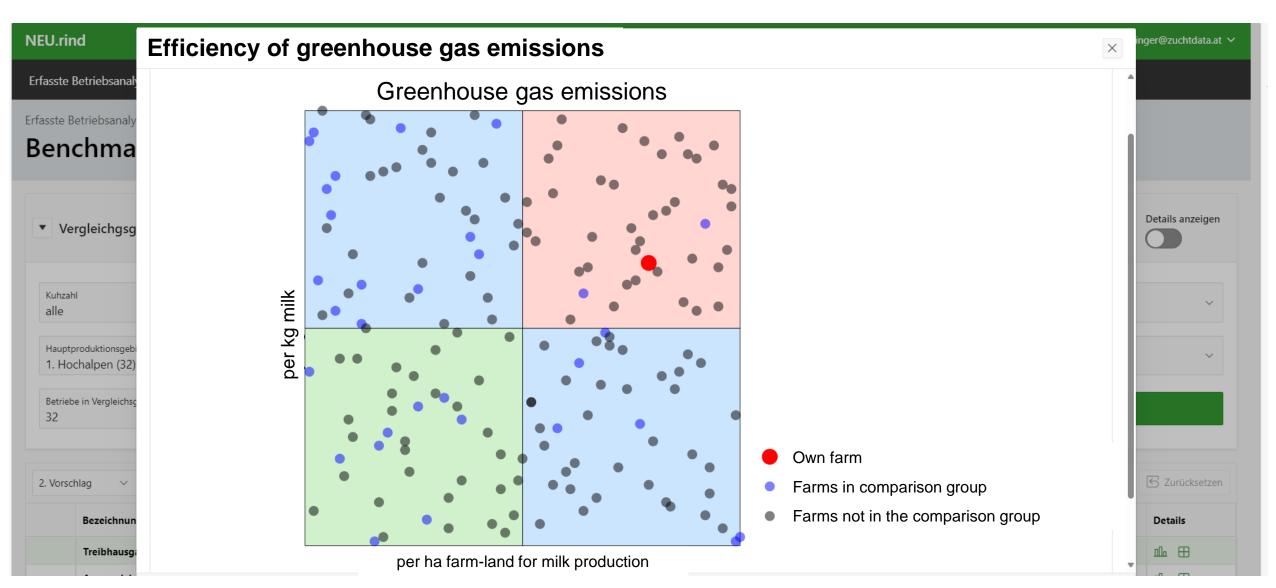
 percentage of high nature value farmland (HNVF)


rare/endangered crops and breeds

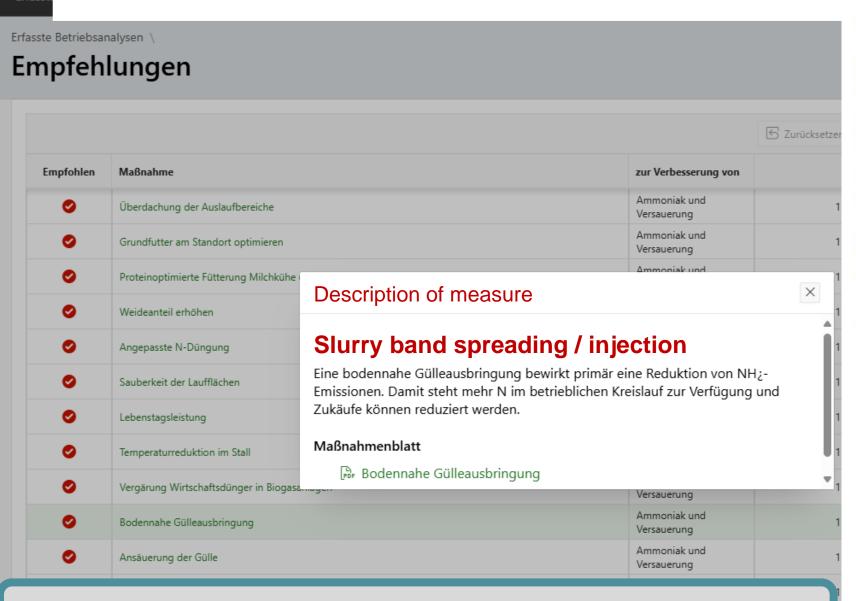
- Animal health aspects to be assessed with collected data (Udder health, Metabolism, Culling/ longevity, Calf health/mortality)
- Economic indicators contribution margin

	Indicator	per kg milk (consideration of co- products, allocation)	per ha utilised area or per farm
1	Global warming potential (GWP)	kg CO ₂ -eq	kg CO ₂ -eq
2	Human edible feed conversion efficiency / Protein production	heFCE factor	kg CP / ha
3	Biodiversity	Potentially disappeared fractions of species	% High nature farmland; Rare/Endangered crops / breeds
4	Fossil energy demand	MJ	GJ
5	Ammonia and acidification	kg SO ₂	kg NH ₃
6	Nitrate emissions	kg N-eq	kg N-eq
7	Animal health aspects	Scores	
8	Gross margin	€	€

NEU.rind tool- Benchmarking



NEU.rind tool- Efficiency



C-f---A

NEU.rind tool- Recommendations

with links and information sheets for measures

Bodennahe Gülleausbringung

Eine bodennahe Gülleausbringung bewirkt primär eine Reduktion von Ammoniak-Emissionen (NH₃). Damit steht mehr Stickstoff (N) im betrieblichen Kreislauf zur Verfügung und Zukäufe können reduziert werden.

Die bodennahe Gülleausbringung mittels Schleppschlauch, Schleppschuh oder Injektion reduziert die Ammoniak-Emissionen deutlich im Vergleich zur Breitverteilung. In Österreich sollte diese Technik auf mehrmähdigen Grünlandflächen, Feldfutter- und Ackerflächen in ebenen Lagen eingesetzt werden. Sie ist die wichtigste Maßnahme, um die Emissionsziele der NEC-Richtlinie zu erreichen. Zudem gelangt der Stickstoff effizienter und verlustärmer zur Pflanze. Es kann Mineraldünger eingespart werden.

Betriebswirtschaft

Die bodennahe Gülleausbringung senkt die Düngerkosten durch effizientere Stickstoffnutzung und ermöglicht gute Erträge. Demgegenüber stehen hohe Anschaffungs- und Ausbringungskosten und erhöhter Zugkraftbedarf, respektive Dieselverbrauch.

Wirkungsbereiche

Treibhausgasemissionen

Wenn bei der Ausbringung weniger Ammoniak (NH₃) verloren geht, reduziert dies die Stickstoffverfrachtung und nachfolgende Lachgasemissionen (N₂O). Durch den verbesserten Nährstoffkreislauf wird die Futterproduktion effizienter.

Ammoniak und Versauerung

Die bodennahe Gülleausbringung mit Schleppschlauch oder Schleppschuh reduziert die Ammoniak-Emissionen (NH₃) im Vergleich zur Breitverteilung. Auch niedrige Temperaturen und eine schnelle Einarbeitung am Acker reduzieren die Emissionen.

Fossiler Energieverbrauch

Eine Futterproduktion mit engen Nährstoffkreisläufen ermöglicht hohe Erträge, reduziert den Zukauffutterbedarf und den Bedarf an industriellem Dünger. Dies reduziert den Verbrauch von fossilen Energieträgern, die bei der Futterproduktion auf den Zulieferbetrieben und bei der industriellen Herstellung von Mineraldünger entstehen.

Weitere Wirkungen

Bei bodennaher Ausbringung wird die Pflanzenoberfläche in Summe weniger verschmutzt; höhere Verschmutzung resultiert nur im Ablagebereich. Dies verringert die sogenannte Ammoniak-Verätzung und begünstigt das Pflanzenwachstum.

Weiterführende Links:

LK NÖ: Rindergülle wirtschaftlich bodennah ausbringen

LKO: Bodennahe Gülleausbringung

Umweltbundesamt: Ammoniakemissionen in der Landwirtschaft mindern

Analyses of results of 200 pilot farms

AIM: Analyse similarities between farms and key figures to investigate farming along with sustainability (environmental, economic/efficiency, social)

Methodology:

1. Define Key-Features

- Knowledge-based selection of the most pertinent features for our research question
- Foundation for similarity measurements, e.g., clustering

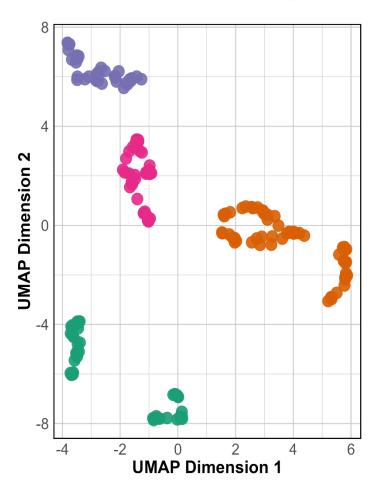
2. Identification of Clusters:

- Machine learning techniques: UMAP-HDBSCAN-Clustering
 - UMAP (uniform manifold approximation and projection for dimension reduction algorithm)
 - HDBSCAN (hierarchy density-based spatial clustering of applications with noise algorithm)

3. Cluster Evaluation:

 The pertinent features of a cluster are assessed by computing zscores comparatively.

Key – Features:


```
"Altitude",
"Severity score
(challenging production
conditions)",
"Energy-corrected milk
per cow and year",
"Productive lifetime
(lactations)",
"Nitrogen-balance
(kg/ha farmland)"
```

Cluster analyses of 200 pilot farms

Dairy Farm Classification

UMAP-HDBSCAN Clustering Analysis

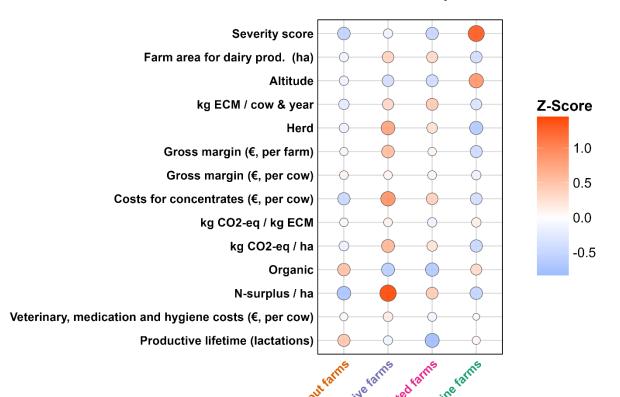
Cluster

- Efficient low-input farms
- Input-intensive farms
- Output-oriented farms
- Alpine farms

Efficient low-input Farms: 60

Input-intensive Farms: 36

Output-oriented Farms: 33


Alpine Production: 41

Z-Scores by FeatureGroup and Cluster

Cluster Characteristics

Z-Score Analysis

Efficient low-input Farms: 60

Input-intensive Farms: 36

Output-oriented Farms: 33

Alpine Production: 41

Feature Groups: Health, Sustainability, Economic, Environmental

Feature	Efficient low-input Farms	Input-intensive Farms	Output-oriented Farms	Alpine Production
Altitude	622 ± 154	564 ± 118	554 ± 203	846 ± 253
Gross margin (€, per cow)	3,923 ± 1,158	4,277 ± 987	4,009 ± 771	3,754 ± 1,185
Productive lifetime (lact.)	3.50 ± 0.86	3.05 ± 0.36	2.53 ± 0.30	3.19 ± 0.72
kg ECM / cow & year	8,655 ± 1,304	9,819 ± 924	10,027 ± 1,117	8,900 ± 1,350
kg CO ₂ -eq / kg ECM	1.10 ± 0.17	1.16 ± 0.50	1.09 ± 0.13	1.17 ± 0.20
kg CO ₂ -eq / ha	13,605 ± 5,409	18,555 ± 4,516	16,183 ± 4,276	11,601 ± 7,910

Comments: Productive lifetime / cow longevity: not at culling, but average lactations of cows alive at farms $C0_2$ -eq calculated including infrastructure

Diversity and complexity of sustainability → Trade-offs (conflicts between specific goals) - more information see presentation 526 Session 52

Implementation / next steps

- In use
 - by Austrian dairy companies for sustainability reporting
 - by Austrian farmers for the evaluation of their farm
- Certification in process
- Further development NEU.rind Tool
 - meat sector

Take home messages

- Trade-off between product-based and hectare-based sustainability performance – differences between production systems and farms
- NEU.rind is a user-friendly digital farm assistant, based on international and national standards → comprehensive and detailed analyses and methods
- Reduced data entry effort → integration into the Central Cattle Database
- Farm comparisons (benchmarking) and farm-specific recommendations
- Suitable for sustainability reporting

 used by dairy companies in Austria

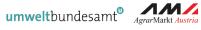
Thank you for your attention!

Dr. Stefan Hörtenhuber BOKU University Vienna Gregor-Mendel-Straße 33, 1180 Vienna AUSTRIA stefan.hoertenhuber@boku.ac.at

Dr. Christa Egger-Danner Rinderzucht Austria, ZuchtData Dresdner Straße 89/B1/18, 1200 Vienna **AUSTRIA** egger-danner@zuchtdata.at

Projektpartner

Wissenschaftspartner


Raumberg-Gumpenstein

RAUMBERGA, GUMPENSTEIN RESEARCH & V DEVELOPMENT

Kooperationspartner

Bundesministerium Land- und Forstwirtschaft. Regionen und Wasserwirtschaft

Mit Unterstützung von Bund und Europäischer Union

